1,044 research outputs found

    A Unified Approximation Framework for Compressing and Accelerating Deep Neural Networks

    Full text link
    Deep neural networks (DNNs) have achieved significant success in a variety of real world applications, i.e., image classification. However, tons of parameters in the networks restrict the efficiency of neural networks due to the large model size and the intensive computation. To address this issue, various approximation techniques have been investigated, which seek for a light weighted network with little performance degradation in exchange of smaller model size or faster inference. Both low-rankness and sparsity are appealing properties for the network approximation. In this paper we propose a unified framework to compress the convolutional neural networks (CNNs) by combining these two properties, while taking the nonlinear activation into consideration. Each layer in the network is approximated by the sum of a structured sparse component and a low-rank component, which is formulated as an optimization problem. Then, an extended version of alternating direction method of multipliers (ADMM) with guaranteed convergence is presented to solve the relaxed optimization problem. Experiments are carried out on VGG-16, AlexNet and GoogLeNet with large image classification datasets. The results outperform previous work in terms of accuracy degradation, compression rate and speedup ratio. The proposed method is able to remarkably compress the model (with up to 4.9x reduction of parameters) at a cost of little loss or without loss on accuracy.Comment: 8 pages, 5 figures, 6 table

    Thermodynamic analysis of a dual-loop organic Rankine cycle (ORC) for waste heat recovery of a petrol engine

    Get PDF
    Huge amounts of low-grade heat energy are discharged to the environment by vehicular engines. Considering the large number of vehicles in the world, such waste energy has a great impact on our environment globally. The Organic Rankine Cycle (ORC), which uses an organic fluid with a low boiling point as the working medium, is considered to be the most promising technology to recover energy from low-grade waste heat. In this study, a dual-loop ORC is presented to simultaneously recover energy from both the exhaust gases and the coolant of a petrol engine. A high-temperature (HT) ORC loop is used to recover heat from the exhaust gases, while a low-temperature (LT) ORC loop is used to recover heat from the coolant and the condensation heat of the HT loop. Figure 1 shows the schematic of the dual-loop ORC. Differing from previous research, two more environmentally friendly working fluids are used, and the corresponding optimisation is conducted. First, the system structure and operating principle are described. Then, a mathematical model of the designed dual-loop ORC is established. Next, the performance of the dual-loop cycle is analysed over the entire engine operating region. Furthermore, the states of each point along the cycle and the heat load of each component are compared with the results of previous research. The results show that the dual-loop ORC can effectively recover the waste heat from the petrol engine, and that the effective thermal efficiency can be improved by about 20 ~ 24%, 14~20%, and 30% in the high-speed, medium-speed, and low-speed operation regions, respectively. The designed dual-loop ORC can achieve a higher system efficiency than previous ORCs of this structure. Therefore, it is a good choice for waste heat recovery from vehicle engines

    DSGN++: Exploiting Visual-Spatial Relation for Stereo-based 3D Detectors

    Full text link
    Camera-based 3D object detectors are welcome due to their wider deployment and lower price than LiDAR sensors. We revisit the prior stereo modeling DSGN about the stereo volume constructions for representing both 3D geometry and semantics. We polish the stereo modeling and propose our approach, DSGN++, aiming for improving information flow throughout the 2D-to-3D pipeline in the following three main aspects. First, to effectively lift the 2D information to stereo volume, we propose depth-wise plane sweeping (DPS) that allows denser connections and extracts depth-guided features. Second, for better grasping differently spaced features, we present a novel stereo volume -- Dual-view Stereo Volume (DSV) that integrates front-view and top-view features and reconstructs sub-voxel depth in the camera frustum. Third, as the foreground region becomes less dominant in 3D space, we firstly propose a multi-modal data editing strategy -- Stereo-LiDAR Copy-Paste, which ensures cross-modal alignment and improves data efficiency. Without bells and whistles, extensive experiments in various modality setups on the popular KITTI benchmark show that our method consistently outperforms other camera-based 3D detectors for all categories. Code will be released at https://github.com/chenyilun95/DSGN2

    WW-representations of two-matrix models with infinite set of variables

    Full text link
    The Hermitian, complex and fermionic two-matrix models with infinite set of variables are constructed. We show that these two-matrix models can be realized by the WW-representations. In terms of the WW-representations, we derive the compact expressions of correlators for these two-matrix models.Comment: 12 page

    Discontinuity of Maximum Entropy Inference and Quantum Phase Transitions

    Get PDF
    In this paper, we discuss the connection between two genuinely quantum phenomena --- the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference of local observable measurements signals the non-local type of transitions, where local density matrices of the ground state change smoothly at the transition point. We then propose to use the quantum conditional mutual information of the ground state as an indicator to detect the discontinuity and the non-local type of quantum phase transitions in the thermodynamic limit.Comment: Major revision. 26 pages, 12 figure
    • …
    corecore